报告题目:Fully Online Matching
报 告 人:张宇昊(香港大学 博士)
报告时间:2020年12月4日 下午2:00开始
报告地点:腾讯会议ID:482 962 4974;密码:485075
报告摘要:We introduce a fully online model of maximum cardinality matching in which all vertices arrive online. On the arrival of a vertex, its incident edges to previously arrived vertices are revealed. Each vertex has a deadline that is after all its neighbors’ arrivals. If a vertex remains unmatched until its deadline, then the algorithm must irrevocably either match it to an unmatched neighbor or leave it unmatched. The model generalizes the existing one-sided online model and is motivated by applications including ride-sharing platforms, real-estate agency, and so on. We show that the Ranking algorithm by Karp et al. (STOC 1990) is 0.5211-competitive in our fully online model for general graphs. Our analysis brings a novel charging mechanic into the randomized primal dual technique by Devanur et al. (SODA 2013), allowing a vertex other than the two endpoints of a matched edge to share the gain. To our knowledge, this is the first analysis of Ranking that beats 0.5 on general graphs in an online matching problem, a first step toward solving the open problem by Karp et al. (STOC 1990) about the optimality of Ranking on general graphs. If the graph is bipartite, then we show a tight competitive ratio ≈0.5671 of Ranking. Finally, we prove that the fully online model is strictly harder than the previous model as no online algorithm can be 0.6317